Heterojunction‐Accelerating Lithium Salt Dissociation in Polymer Solid Electrolytes

نویسندگان

چکیده

Abstract The practical application of solid‐state lithium‐metal batteries (SSLMBs) based on polymer solid electrolytes has been hampered by their low ion conductivity and lithium‐dendrite‐induced short circuits. This study innovatively introduces 1D ferroelectric ceramic‐based Bi 4 Ti 3 O 12 ‐BiOBr heterojunction nanofibers (BIT‐BOB HNFs) into poly(ethylene oxide) (PEO) matrix, constructing lithium‐ion conduction highways with “dissociators” “accelerating regions.” BIT‐BOB HNFs, as ceramic fillers, not only can construct long‐range organic/inorganic interfaces transport pathways, but also install regions” for these pathways through the electric dipole layer built‐in field promoting dissociation lithium salts transfer ions. working mechanisms HNFs in matrix are verified experimental tests density functional theory calculations. obtained composite exhibit excellent migration number (6.67 × 10 −4 S cm −1 0.54 at 50 °C, respectively). assembled symmetric battery achieves good cycling stability over 4500 h. LiFePO ||Li full delivers a high Coulombic efficiency (>99.9%) discharge capacity retention rate (>87%) after 2200 cycles. In addition, prepared electrolyte demonstrates potential flexible pouch batteries.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Lithium-based Solid Polymer Electrolytes

Sol-gel derived poly(oxyethylene)/siloxane hybrids doped with lithium hexafluoroantimonate, LiSbF6, have been prepared. Compositions of these novel xerogel electrolytes were identified using the conventional d-U(2000)nLiSbF6 notation, (where n is the molar ratio of oxyethylene moieties per Li + ion) and samples with n between ∞ and 2.5 were characterized by conductivity measurements, cyclic vol...

متن کامل

All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes.

Lithium-based rechargeable batteries offer superior specific energy and power, and have enabled exponential growth in industries focused on small electronic devices. However, further increases in energy density, for example for electric transportation, face the challenge of harnessing the lithium metal as negative electrode instead of limited-capacity graphite and its heavy copper current colle...

متن کامل

Polymer Electrolytes for Lithium/Sulfur Batteries

This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electroche...

متن کامل

Solid lithium electrolytes based on an organic molecular porous solid.

A new type of solid lithium-ion conducting electrolytes prepared by incorporation of Li(+) ions into a cucurbit[6]uril (CB[6])-based organic molecular porous solid shows high Li(+) ion conductivity (∼10(-4) S cm(-1)) and mobility (transference numbers, tLi(+) = 0.7-0.8). In addition, the solid electrolytes show excellent, thermally stable performance even after several temperature cycles.

متن کامل

Conjugated polymer energy level shifts in lithium-ion battery electrolytes.

The ionization potentials (IPs) and electron affinities (EAs) of widely used conjugated polymers are evaluated by cyclic voltammetry (CV) in conventional electrochemical and lithium-ion battery media, and also by ultraviolet photoelectron spectroscopy (UPS) in vacuo. By comparing the data obtained in the different systems, it is found that the IPs of the conjugated polymer films determined by c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Functional Materials

سال: 2023

ISSN: ['1616-301X', '1616-3028']

DOI: https://doi.org/10.1002/adfm.202307263